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LElTER TO THE EDITOR 

Speculations on self-avoiding surfaces in fractals-a mean 
field treatment 

R B Pandeyt, N KumarS and D Stauffer§ 
Condensed Matter Workshop, International Centre for Theoretical Physics, Trieste, Italy 

Received 7 August 1984 

Abstract. We estimate the exponents characterising the self-avoiding surfaces using an 
approximation in the framework of a Flory-type theory. We find for planar self-avoiding 
surfaces embedded randomly in a fractal of dimensionality D’: U = 3/(4 + D’) ; for random 
surfaces of fractal dimension D embedded in a Euclidean space of dimensionality d :  
Y = 3/(2D + d - 2); and for fractal surfaces embedded in a structure of fractal dimensional- 
ity D :  u=3/(2D+D‘-2). 

Recently, Maritan and Stella (1984) have attempted to generalise the excluded volume 
phenomena of random walks to that of planar random surfaces (plaquettes) in euclidian 
space. They have argued that the Flory theory compares very well with the real space 
renormalisation group for the exponent for the radius of gyration of the self-avoiding 
surfaces (SAS). Here, we extend it further (i) for the planar random surfaces embedded 
in fractal of dimensionality D’, (ii) for the fractal (of dimensionality D) random 
surfaces embedded in euclidian space of dimensionality d and (iii) for the fractal (of 
dimensionality D) random surfaces embedded in a fractal of dimensionality D’. 

(i) Planar random surfaces embedded in thefractal. A plaquette is a small basic unit 
to build up a large self-avoiding surface object. We restrict it to infinite fractals of 
dimensionality D’ (e.g. an incipient infinite percolating cluster (IIC))  embedded in an 
euclidian hypercubic lattice of dimensionality d 2 3. These plaquettes observe certain 
rules to explore different conformations on the fractal. Two adjacent plaquettes may 
join each other either at a common point or along a common side (i.e. a line), such 
that the surfaces (i.e. planes) explore randomly the available space. The excluded 
volume restriction means that two plaquettes cannot occupy the same area. 

Let R be the linear dimension of such a SAS object. We follow Maritan and Stella 
(1984) in assuming that the surface area A here scales like the chain length in a 
self-avoiding walk (SAW) chain for calculating the elastic free energy i.e. 

where N is the number of plaquettes, A , a  R i a &  is the ideal (gaussian) area. The 
repulsive free energy due to the exclusion of plaquettes is given by 

FeluA2/A:= R 4 / N  (1) 

Frep N2/ R D’ (2) 
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in our Flory-type mean field theory. Minimising the total free energy F = Fe, + Frep 
with respect to R we obtain 

R x  N u  (3) 

v=3/ (4+D' ) .  (4) 

An alternative to equation (1 )  is to replace the denominator N by N 2 k  with k = D,/2D' 
since a random walk on a fractal moves a distance varying as t k  in time t (Rammal 
and Toulouse 1983, Gefen et a1 1983, Pandey et a1 1984); D, is the spectral or fracton 
dimension. Then equation (4) is replaced by 

Y = (2 +2k)/(4+ D'). ( 5 )  

If an argument analogous to equation ( 5 )  is used for a SAW on a lattice, we get a result 
similar to that of Rammal et al (1984, see also Sahimi 1984) which seems to contradict 
Monte Carlo data (Kremer 1981, Lyklema and Kremer 1984). The analogue of equation 
(4) for a SAW, on the other hand, is Kremer's empirical rule 3/(2 +D' ) ,  which agrees 
with his Monte Carlo data. 

In the limiting case where the plaquettes are distributed in an euclidian space of 
dimensionality d (instead of being restricted on IIC) D' = d and k = 4; substituting 
these values in equation (4) or ( 5 )  we obtain, 

v = 3/(d +4) ( 6 )  

which is the result of Maritan and Stella (1984). The fractal dimensionality Df of the 
SAS embedded in a fractal can then be obtained from Df= 1/v.  To find the upper 
dimensionality above which the excluded volume interactions become negligible, we 
require Frep+ 0 as N +  03, i.e. RD'/ N 2  should diverge. That seems impossible for the 
incipient infinite fractal at the percolation threshold where D' cannot exceed 4. Thus 
the above approximate analysis suggests that even for arbitrarily high dimensions d 
the SAS embedded on the incipient infinite network will always feel their repulsion, in 
contrast to the SAS embedded on regular lattices with dimensionality d above 8 (Maritan 
and Stella 1984). 

(ii) Fractal random surfaces in euclidean space. In the above analysis we considered 
me ranaom aistribution of two-dimensional plaquettes restricted to lie on a fractal. 
Now we consider the surface Af of a finite fractal object of dimensionality D embedded 
in a regular lattice of dimensionality d. This surface of the fractal is assumed to vary 
as 

A,= RD-'. (7) 

N such finite objects cluster together with the restriction that their surfaces do not 
overlap ( R  being the radius of the fractal). The random fractal surfaces so assumed 
are gaussian distributed in a d-dimensional euclidian space to explore its conforma- 
tions. In a sense this is opposite to our previous case of euclidean surfaces in a fractal 
space. As before, the linear extension R of the self-avoiding fractal random surfaces 
is determined by minimising the competing effects of attractive (elastic) free energy 
and repulsive (excluded volume) free energy. The elastic free energy is given by 

F,,E R ~ ( ~ - I ) /  N (8) 
where we have extrapolated the arguments of Maritan and Stella (1984) replacing their 
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planar plaquette by a fractal surface. The repulsive free energy is estimated as usual 

F r e P a  N 2 /  Rd.  (9) 

R a N ”  (10) 

v a 3 / ( 2 D  + d  -2) (11 )  

Minimising F = Frep + Fe, with respect to R we obtain 

which reduces to the results of Maritan and Stella (1984) for the self-avoiding random 
surfaces for plaquette for which D = d = 3. As another example, a percolation cluster 
( D  = 2.5) in a cubic lattice ( d  = 3 )  gives Y = $. The repulsive energy is negligible for 
d above some upper dimensionality, 

d , = 4 0 - 4  (12) 
which reproduces the result d ,  = 8 for D = d = 3 in the limiting case of Maritan and 
Stella (1984). 

(iii) Fractal random surfaces embedded in the fractal. Here we look at the above 
mentioned fractal surfaces of model (ii) embedded in the fractal of model (i) of 
dimensionality D’. Under the approximation outlined in preceeding sections the total 
free energy is the sum of the elastic energy of model (ii) and the repulsive energy of 
model (i): 

Constant( 1)R2(D-’)/ N +Constant(2) N 2 /  RD’.  (13) 
Minimisation with respect to R gives 

RaN”, ~ = 3 / ( 2 D + D ’ - 2 ) .  

As an example, a two-dimensional diffusion-limited aggregate (Witten and Sander 
1983) embedded into a two-dimensional incipient percolating network has v = 0.9. As 
in the alternative, equation ( 5 ) ,  in model (i) one may also replace 3 in equation (14) 
by 2 +2k for this model. Again, there seems to be no upper dimension for the fractal 
surfaces embedded in the incipient percolating cluster. 

In summary, we have presented several possible definitions of self-avoiding surfaces 
for the fractal objects and have given some speculative approximate results for their 
asymptotic linear extent R. 
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